o6 -6/

N89 - 16299 /7277
| Jo R

k Analysis and Specification Tools in Relation to the APSE

John W, Hendricks

Systems Technology, Inc.

Ada and the Ada Programming Support Environment (APSE) specifically address the
phases of the system/software lifecycle which follow after the user's problem has
been translated into system and software development specifications. The
"waterfall" model of the lifecycle identifies the analysis and requirements definition
phases (now known as the concept exploration and the demonstration & validation
phases in the lifecycle as described in the new DOD-STD-2167) as preceeding

program design and coding.

concery DEMONSTRATION | rmooucion
EAPIORATION | AND VALIDATION FULL-SCAIE DRVELOPMENT AND DEPLOYMENT
MSTION/SYSTEM | SYSTEM/SOFTWARE ' svSIEM PRODUCTION
NEQUINEMENTS | AEOVINEMENTE COMPUTER SOFTWARE DEVELOPMENT | igTSGRATION | OTRR AND DEFLOTMENT
DErwaTION oErwation AND TESTING
= .
P \.\
L e "~
= ~
. .
soriwame N
REGUNEMENTS | pret mnARY .
~
ANALYSTS DEsON oeTANED N
DEMON | cooma Ane .
vt eotme | >,

Since Ada is a programming language and the APSE is a prcgramming support

environment, they are primarily targeted to support program (code) development,

B.4.2.1

testing, maintenance, etc. The use of Ada based or Ada related specification
languages (SLs) and program design languages (PDLs) can extend the use of Ada back
into the software design phases of the life cycle (for example, see Goldsack).
However, there seems to be some agreement that Ada isnot appropriate as a language
for dealing with the "problem space" and the earliest phases of the lifecycle (Brodie,

Mylopoulos, and Schmidt, p.410; Booch,p. 359).

The Ada Programming Support Environment (APSE), and indeed the Ada language
itself, was defined as a response to the "software crisis" in DOD embedded systems.

Booch (p.7-8) lists a number of symptoms of this situation, including:

o Responsiveness. Computer-based systems often do not meet user
needs.

(o] Modifiability. Software maintenance is complex, costly, and error
prone.

In particular, software maintenance is identified as being responsible for between
40% and 70% of the total hardware and software expenditures for these systems. We
can expect that many of the systems for the NASA space station will share important
characteristics with the DOD embedded systems (e.g., complexity, long-lifetime,
changing requirements, real-time interiaces), and they should be subject to many of

these same problems.

The world's best programming efiort can not produce a system which is responsive to
the user's needs if ihe requirements upen which it depends do not describe an

appropriate solution to the user's problem or if the requirements are in a form which

B.4.2.2

we have great difficulty translating inio an implementable design. Also, if this
problem exists with the original requirements for a system, it can be repeated every
time there is a change in the problem. We do not have data which characterize the
distribution of software maintenance costs between "bug fixes" and changes in
requirements, but it would not be surprising if a large part of the "maintenance" costs
are caused by evolution of the requirements, especially for systems which are in
service for a number of years. Therefore, both the responsiveness problems and a
large part of the maintainability problems which characterize the software crisis may
be beyond the reach of Ada and the APSE, unless facilities to deal with the processes

of concept exploration and demonstration & validation can smoothly be linked into the

APSE.

There are a number of developments which demonstrate the feasibility and
desirability of formalizing specifications or architecture designs at higher levels of
abstraction than that provided by a programming language (e.g., Balzer; Zave). These
efforts share an objective of reaching out toward the "problem space" with a
representation which is much easier to use than a programming language for
describing the requirements, but is still capable of being translated or transformed
into compilable code with limited manual intervention (automatic programming).
They also share a commitment to extensive use of computer based tools to support the
processes of analysis, specification and design. To the degree that these approaches
succeed, they can address the problems of responsiveness to initial user needs and

maintenance of responsiveness as these needs change over the lifetime of the system,

It is unlikely that any of these efforts will eliminate the need for substantial amounts

of human programming in the development of the large and complex systems for

B.4.2.3

ORIGINAL PAGE IS
OF POOR QUALITY

which Ada and the APSE are designed. If these new techniques are to be
exploited for major projects such as the N/.SA space station, they must be capable of

being used in conjunction with program dusign and development under the APSE.

One of the most promising of these new systems is Process Architecture Design
Technology (PADtech). Systems Technology is working with the developers of this
system, Associative Design Technology, Ltd (USA), to introduce and support
this new technology for aerospace and military applications. An overview of PADtech
and some of the issues raised by its use with the APSE should suggest both the prormise
of these new systems and some of the issues to be considered in "integrating" these

new tools into major projects which will be using the APSE.

PADtech includes both a methodology and a set of computer based tools to support the
use of the methodology in creating an architecture design for a complex system. The

methodology provides a representation to formally describe:

o the structure of processes which we expect the system to
implement, the events which will cause each process to be executed,
and the events which each process can cause to occur; and

o] the conceptual structure of the entities involved in the processes in
terms of the role relation hips between the concepts, object types
and objects.

This representation (Process Architecture Design specification Language or PADL)
describes processes which may be implemented by hardware, or by persons following
procedures, as well as by software. However, PADL has a precise semantics which

enables it to be transformed into executable forms, and this inevitability makes its

B.4.2.4

IR A pirvinarig !
SO A A A BT VRS X ALK R 715

application a more demanding process. By way of contrast, Goldsack (p.! 1) noted that
"...the ease of use of PSL, SADT and many others, is partially due to the absence of a

precise...semantics."
The computer based tools for the application of PADtech include the following:

o A design workbench which provides a high performance, color, icon
driven, interactive graphics interface for the cre:tion and
manipulation of the graphical form of the Process Architecture
Design specification Language. The design workbench supports the
system architect in the evolutionary process of analysis,
specification and design. It also provides support for interactions
with problem area experts and with program designers and
programmers.

o Modules which translate between the graphical form and the textual
form of the Process Architecture Design specification Languag.;

o A data manager which provides bookkeeping support for the
evolving process architecture design;

o A facility for building up a customized set of icons, process models,
etc. which are appropriate for specific problem areas.

o An interpreter for simulated execution of the process architecture
for an early prototyping, iterative design cycle.

o A "monitor" which collects the results of the interprc {i « 2xecutic «

o] A "debug" environment for controlling and examining the results of
interpretive execution.

o Code generation facilities for transforming Process Architecture
Design specification Language descriptions for process and
conceptual structures into the implementation languages, Ada and
SQL.

ORIGINAL PAGE B.4.2.5
s
OF POOR QuALITY

. ~.-....~_:—c;c%

S IR B et by oo e T

PADtech is designed to be applicable to the analysis, specification and design process
at several different levels. First, it can be used at the strategic planning level. For
example, one can build a process architecture to represent an entire organization or a
major project, and use this "enterprise model" to identify and specify automated
information and communication systems to support operation of the entire enterprise.
Second, PADtech can be used at the system or integration architecture level for a
specific system. It can be used to design the architecture which defines the overall
structure for a complete system, or to design and implement a database and
communication "substrate" to integrate many separately developed modules,
including man- and hardware-in-the-loop elements. Third, PADtech can be used to
specify, design and implement (by code generation) systems which can readily be
characterized by "object processing" processes, i.e., processes which create and

change the state of both abstract and "real" objects.
PADtech will be most beneficial when applied to systems with some of the following
characteristics:

o} Requirements which are complex, not completely understood, and
are expected to evolve over the life of the system,

o Requirements for very high speed execution involving parallel
and/or distributed execution,

o] Requirements for real-time responsiveness,

0 A requirement for high speed management of complex, interactive
data bases and cornmunicatior structures,

o Integration of a large number of processes while maintaining
protection against catastrophic failures.

B.4.2.6

We expect that there will be a number of space station systems with these
characteristics, and that PADtech and other innovative tools for analysis,
specification and design will be required to make these systems responsive to the

requirements and maintainable over a long lifetime.

What are some of the issues raised by the use of these tools with Ada and the APSE?
First, tools which are geared to creating a problein space oriented, executable
specification or design specification tend to cut across the phases of the lifecycle as
defined in the waterfall model. These tools gain much of their utility from an
iterative cycle of analysis, execution and evaluation of the specification as a
"prototype," re-analysis, etc. They emphasize direct involvement of the users or
problem area experts in evaluating the implications of a design specification as they
are revealed by repeated prototyping. The analysis and prototyping processes are
supported by an interactive environment which is heavily dependent on "prototype
execution" and graphics for presentation and manipulation. Also, these new
techniques push formalization back toward the problem specification and use
(partially) automated transformation to generate code modules. This allows
maintenance which is occasioned by changes in the requirements, to be perforined on
the specification/design rather than on the code. Then, the revised specification is
transforimed into updated code modules. Use of these new techniques will be made
more difficultif arigid segmentation into the phases of a waterfall lifecycle model is

imposed by procurernent processes or by implernentations of the APSE.

Second, there are several reasons why specification and design tools should be linked
into the APSE. Most importantly, if design specifications such as those in PADL are

to be used for maintenance and are to become a part of the permanent documentation

B.4.2.7

S o ——
SRl v A picss B IDIDORR I P rp0.27 s araics - v e ow gyt e o m sea

of a systern, it is important to have control over their versions as one does for code
modules. Also, in spite of cveryone's tendency to claim that his system is complete
and universal, none 2re. All of the analysis, specification and design tools would
benefit from being able to interface with other systems which could complement their
own capabilities (for example, see Ripken). An "open" APSE could coordinate
between several "outside" tools, as well as between these tools and code development

under the APSE.

Third, the amount of effort being put into the development of Ada and the APSE
Ccreates a certain momentum towards making them all inclusive. If Ada is the
programming language, why not use it as the basis for a design language, a
specification language, a conceptual design language, etc., and mandate their use? [f
the APSE is to control the programming process, why not mandate that only tools
which are fully integrated into the APSE can be used from concept exploration
onwards? The potential benefits of such a coherent, start-to-finish development
environment need to be balanced against the potential costs of using much less than

optimal tools in the pre-programming phases of the lifecycle,

A detailed examination of these issues would be a major project and is not
contemplated here. However, we will suggest that in applying Ada, the APSE and
standards such as 2167, we should be careful not to let their application expand to a
point where they stifle innovation. The continuing revolution in microelectronics is
providing an opportunity to create systems to solve increasingly complex problems;
new techniques for specification and design will also be needed to exploit this
opportunity. Many of these new techniques, which will be needed to build the

increasingly complex systems we require, will notbe developed exclusively for use by

B.4.2.8

one industry or one language. Retaining the option to select different methodologies

for problems which have differing characteristics may be the only effective approach

at this time,

Recall that the standardization of the APSE as a programming support environment is
only now happening after many years of evolutionary experience with diverse sets of
programming support tools. Restricting consideration to one, or even a few chosen
specification and design tools, could be a real mistake for an oi’ganization or a major
project such as the space station, which will need to deal with an increasingly complex
level of system problems. To require that everything be Ada-like, be implemented in
Ada, run directly under the APSE, and fit into a rigid waterfall model of the lifecycle

would turn a promising support environment into a straight jacket for progress.

B.4.2.9

o R NS o 1L

References

Balzer, R., "A 15 Year Perspective on Automatic Programming," IEEE Trans.
Software Eng., vol. SE-11, pp. 1257-1268, November 1985.

Booch, G., Software Engineering with Ada, Menlo Park, CA: Benjamin/Cummings,
1983,

Brodie, M., J. Mylopoulos and J. Schmidt (eds.), On Conceptual Modeling;
Perspectives from Artificial Intelligence, Databases and Programming Languages,
New York: Springer-Verlag, 1984.

Goldsack, S. (ed.), Ada for Specification: Possibilities and Limitations, Cambridge,
England: Cambridge University Press, 1985,

Pepper, P. (ed.), Program Transformation and Programming Environments, Berlin:
Springer-Verlag, 1984.

Zave, P., "The Operational Versus the Conventional Approach to Software
Development,"” Commun. ACM, vol. 27, pp.104-118, Feb. 1984.

B.4.2.10

